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ABSTRACT the advantage of simulating complex hydrologic systems
and utilizing distributed field hydrologic data. It is also

This paper focuses on evaluating the performance of recognized that, compared to conceptual lumped models,
physically based distributed and conceptual models, and physically based distributed models are more complex to
assesses their sensitivity to changes in the temporal and setup, have more stringent data requirements, and can be
spatial sampling of rainfall. The Hydrologic Modeling subject to over-parameterization. However, the
System (HMS) was selected to represent conceptual increasing availability of distributed data on rainfall and
hydrologic models, while MIKE-SHE and GSSHA were watershed properties, along with the exponential
selected to represent distributed physically based models, improvement in computational resources, have increased
This manuscript presents results with MIKE-SHE, while the interest of both research and applied communities in
the poster at the conference will include results from the development and applications of such models.
GSSHA. The performance evaluation criterion is the
overall agreement between observed and predicted Recent advances in the development of both
hydrographs and the models' ability to predict time and conceptual and physically based models have lead to a
magnitude of peak discharges and runoff volume. Both number of model inter-comparison and evaluation studies.
models were carefully calibrated and validated using A detailed discussion of such studies is given in Michaud
numerous storm events for a 21.4 km2 watershed in and Sorooshian (1994a), Refsgaard and Knudsen (1996),
northern Mississippi. The results indicated that MIKE- and Perrin et al., (2001). A review of these comparative
SHE captured the peak runoff discharges and total runoff studies indicates that the performance accuracy of the two
volume better than HMS. However, overall, the modeling approaches varies widely. The comparable
performance of both models was quite reasonable. To performance accuracy obtained with three models of
assess the models' requirements for rainfall information, varying degrees of complexity lead Refsgaard and
an in-depth investigation of the impact of the spatial and Knudsen (1996) to recommend the use of conceptual
temporal sampling of rainfall on the prediction accuracy models especially when calibration data is available, and
of each model was conducted. The study showed that to limit the use of complex physically based data for
MIKE-SHE was more sensitive to both the spatial and ungauged basins where they are expected to have a better
temporal sampling of rainfall than HMS. performance. As discussed by Refsgaard and Knudsen

(1996), the superiority of complex physically based
1. INTRODUCTION models over simpler conceptual models remains at the

hypothesis level and has not been unambiguously
Currently available watershed models range from hyoesslvlad asntbnuamiosy
Currleconctualy availablemwed models to praengve fsupported by actual and sufficient performance evaluation

simple conceptual lumped models to comprehensive tests. Recently, the Hydrology Laboratory of the National
physically based distributed models. Conceptual lumped Weather Service (NWS) office of hydrology has
models use an integrated description of parameters conducted an extensive model inter-comparison study to
representing an average value over the entire catchment. assess the performance of several physically based
A watershed can be divided into a number of sub- models against operational lumped models (Smith et al.,
catchments where the hydrologic parameters may vary 2004; Reed et al., 2004). The study found that, in more
from one sub-catchment to another. In such case, lumped cases, the lumped model outperformed the distributed
models may be labeled as "semi-distributed." They models. However, the NWS study indicated a wide range
remain non-physically based, however, as they use of accuracies among model results and suggested that
synthetic methods of transforming rainfall to runoff. factors such as model formulation and the modeler's skill

Distributed physically based models, on the other can have bigger impact than the type of the used model.

hand, can account for spatial variations in input The present study builds on the continuous research
parameters and state variables within the catchment. They efforts to investigate the capabilities and limitations of
incorporate physical formulations of the different conceptual versus physically based models. Specifically,
hydrologic processes. Therefore, this class of models has the study evaluates the prediction accuracy of two
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different rainfall-runoff models, conceptual semi- while the soil can be classified into two main types: Silt
distributed and physically based distributed models, loam (80%) and clay loam (20%) (Blackmarr, 1995).
focusing on the sensitivity of both modeling approaches
to the quality and accuracy of the rainfall information. It
has been a common belief by the hydrologic community / 4
that rainfall variability, both in space and time, has a
significant effect on the response of hydrologic systems.Therefore, a number of studies have addressed the impact~i- J• • •

of rainfall sampling resolution on the prediction accuracy 55*

of hydrologic models, and somewhat mixed results were 2 m e ax
often reported. Wilson et al. (1979), Krajewski et al. 11 "
(1991), Ogden and Julien (1993), Holman-Dodds et al.
(1999), and Michaud and Sorooshian (1994b), have 1 l0

shown that the variability and the sampling resolution of
rainfall can have a significant influence on the results of
hydrologic models. Other studies by Beven and ecale • Rain Gage

0 1 2 Kilometes Q Streamfiew Gage

Hiomberger (1982) and Obled et al. (1994), however, have

shown that a correct estimation of the total rainfall Figure 1: Location of the monitoring stations in the
volume is more important for accurate flow prediction Goodwin Creek watershed.
than providing the model with detailed spatial and
temporal patterns.

3. MODEL CALIBRATION AND VALIDATION
The present study has two main objectives: (1) To

compare the performance accuracy of two different Both models, MIKE-SHE and HMS, were calibrated
hydrologic models, conceptual and physically based, and and validated using the split-sample test method as
(2) to investigate the relative sensitivity of both modeling described by Klemes (1986). Accordingly, one set of data
approaches to the sampling resolution of rainfall. was used to calibrate the models while another of data

were reserved for model validation. During the
calibration procedure, physical and numerical parameters,

2. THE STUDY SITE such as loss and routing coefficients were adjusted and
fine-tuned to minimize the difference between the model

The Goodwin Creek experimental watershed located results and the field observations. However, parameter
at the north central part of Mississippi was selected for adjustments remained within the physically acceptable
this study. The National Sediment Laboratory of the ranges based on information available in the literature. It
United States Department of Agriculture in Oxford should be noted that both models were calibrated using
Mississippi has been monitoring the watershed since the runoff discharge measured at the outlet of each sub-
1981. Detailed information about the watershed and the basin within the watershed.
available data can be found in Alonso and Binger (2000).

Afterwards, a second independent set of data was
The watershed has a fairly steep topography with used to validate the models. No further adjustments to the

drainage area of 21.4 km2. The terrain elevation in the parameters were allowed at this stage, and the land use
watershed, with reference to mean sea level, ranges from and other watershed characteristics were assumed to
71 m near the outlet to 128 at the catchment divide with remain unchanged.
an average channel slope of 0.004. It has a humid climate
(hot in summer and warm in winter), an average annual
temperature of about 65oF, an average annual rainfall of 4. EVALUATION CRITERIA
about 1440.2 mm (56.7 inches), and a mean annual runoff
of 144.8 mm (5.7 inches). The criteria used to evaluate the performance of the

models are the overall agreement between predicted and
A network of 30 gauges is used to measure measured runoff discharges, and the models' ability to

precipitation over the watershed. The watershed has been predict time and magnitude of hydrograph peaks, and
divided into 14 sub-catchments with a flow-recording runoff volume. The following statistical measures were
flume constructed at the outlet of each. Figure 1 shows a used to quantify the performance accuracy of both models
map of Goodwin Creek watershed along with the during each simulation periods, and combined over all
locations of the monitoring stations. The land-use in the periods:
watershed can be described as follows: idle land and
pasture (60%), forest (26%) and cultivated land (14%),
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(1) Absolute Runoff Volume Error Where, Pe is relative peak error (%), Pp is the

V.= Vp - V, (l-a) predicted Peak Flow (m3/s), Pr is the reference peak flow
(m3/s), i is the peak counter, and N is the number of

e v-yr Peaks.

- x 100 (1-b) (4) Error in Peak Time

Where, Ve is the runoff volume error (m3 or %), Vr is N T

the reference runoff volume (m3), and Vp is the predicted L. Tpi-i
runoff volume (m3). T. N (6)

N(6

(2) Root Mean Square Error Where Te is the error in peak time (minutes), Tp
is the predicted peak time, Tr is the reference peak time,

Runoff- and N is the number of peaks.
2 The reference quantities used in the above statistics

I(Qpi - Qni will be clearly defined in the upcoming sections.

RMSE = N= (2-a)
-N(5. 

CALIBRATION AND VALIDATION RESULTS

N 2 It is important to state that the raw precipitation data
pi - aJ were aggregated to 15 minutes accumulations and used as

i=1 __input to both models. Figures 2 through 4 and Table 1
N show a summary of the models performance. The

RMSE = - x l00 (2-b) statistics shown in Table 1 are based on the all the
Qr validation periods combined together.

Where, Qp is the predicted Flow (m3/s), Qr is the

reference flow (m3/s), Qr is the mean flow of reference 3- Obsoved

(m3/s), i is the hourly counter, and N is the number of M MIs-••E

discharge observed-predicted pairs. 25- -0 S
20-

Rainfall: 15

N2 10-

A - Rr) 5

RMSE = Nx 100 (3) 4/19/82 4/20/82

r, Figure 2: Measured and simulated discharge at the

Where, Rri is the rainfall intensity a reference catchment outlet (calibration period).

sampling frequency, RAti is the aggregated intensity at

sampling frequency of At (30-minute, 1-hr, 2-hr, etc.).

(3) Relative Peak Error

S'--
1 x100

Simple Average: PJ = (4)
N

N"I P, i •1P00 xOOxP Figure 3: Measured and simulated discharge at the

P i=1 P ( catchment outlet (validation periods).
Weighted Average: Pe = N (5)

i=1



Table 1: Statistical Summary of the Models Performance

Volume Error RMSE Relative Peak Error Peak Time
% Error

.. (m ) % . m3Is I % . Simple Weighted (min)
_Calibration

MIKE-SHE -28,766 -1.8 1.17 48.3 3.1 2.5 18.0
HIvMS 33,213 2.1 1.7 68.4 5.9 6.8 30.2

Validation
MIKE-SHE 726,370 4.9 1.9 63.6 15.0 11.9 30.3

HIMS 1,116,109 7.5 2.1 69.9 25.5 19.1 24.6

also comparable to experiments performed by Shah et al.
(1996) where a simple lumped and distributed models
performed well under wet antecedent moisture conditions.

6. RAINFALL TEMPORAL SAMPLING ANALYSIS

This experiment was designed to study the sensitivity
of the models to changes in the temporal sampling of
precipitation data. The 15-minute rainfall data were
aggregated into 30-minutes, 1-hr, 2-hr and 6-hr
samplings. This aggregation will cause gradual loss of
rainfall temporal information while conserving the total
volume. The predictions obtained with the 15-minute
precipitation data were considered to be the reference to
which other temporal samplings are compared. The

Figure 4: Measured and simulated peak runoff discharges simulation periods used to calibrate and validate the
during calibration and validation periods. models, were repeated for each temporal sampling.

Overall, MIKE-SHE reproduced the details of the A summary of the impact of the temporal sampling
measured hydrographs, while HMS was unable to capture on the models' response is shown in Figures 5 and Table
such details due to utilizing synthetic and approximate 2. In order to confirm the deterioration pattern of the
runoff transformation techniques coupled with predicted runoff hydrographs, the simulations were
assumptions of linearity and superposition. The statistical repeated using a single gauge (gauge#54) located at the
measures represented in Table 1, however, show that both center of the watershed. The results of the test were
models predicted runoff volume, overall runoff discharge, similar to the all gauges temporal analysis.
peak discharge, and timing of the peak discharge
reasonably well. It can also be observed that the
distributed model performed better than the conceptual 100 300

model, especially in the ability to predict peak runoff 90250

discharges (see Figure 4). However, difference in the 80
:F 7020performance between the two models was not drastic. It o 200 w

is possible that the response of both models was similar m 60

due to the relative homogeneity of the land use and soil o50 150

properties of the watershed tested herein. 40 130 100

The performance exhibited by both models in this 20 -- HMS m

study is in full agreement with other published results, 10_

e.g. Michaud and Sorooshian (1994a) and Refsgaard and 0o 0
50 100 150 200 250 300 3 400

Knudsen (1996). Both studies concluded that conceptual Rainall Temporal Resolution (minutes)

lumped and physically based distributed models have
similar runoff prediction accuracy when data is available Figure 5: Error in rainfall and runoff due to rainfall
for calibration purposes. The results presented here are temporal sampling
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It is observed in Figure 5 and Table 2 that the runoff overall trend of the response of both models is similar,
RMSE, relative error in peak magnitude and time vary MIKE-SHE was clearly and consistently more sensitive to
almost linearly with changes in the temporal rainfall changes in the temporal sampling of rainfall.
sampling. The results also indicate that although the

Table 2: Statistics Summary for the Temporal Sampling Analysis

Rainfall
RMSE 30 min I hr 2 hr 16 hr
m-/hr 0.27 0.41 0.49 0.60
% 108.84 165.54 199.10 246.04

MIKE-SHE

Sampling Volume Error RMSE Relative Peak Error % Error in
Peak Time

(m3) % m3/S % Simple Weighted (min)
30 min 24,895 0.14 0.23 7.71 2.99 2.24 4.5
1 hr -11,278 -0.07 0.52 17.66 5.54 5.09 7.88
2hr -62,622 -0.36 1.23 41.71 10.57 10.00 19.88
6hr -240,669 -1.40 2.78 94.68 30.58 33.32 92.63

HMS
Sampling Volume Error RMSE Relative Peak Error % Error in

Peak Time
(M3) % m3/S % Simple Weighted (min)

30min 17,559 0.10 0.13 4.32 1.25 1.01 1.13
1 hr 19,905 0.11 0.41 13.63 2.88 3.00 5.25

2hr 29,551 0.17 1.08 35.66 8.70 7.70 15.37
6hr -291,933 -1.65 2.89 95.28 25.59 27.04 72.00

Table 3: Statistical Analysis for the Models' Sensitivity to Changes in the Spatial Sampling of the Rainfall Data

Rainfall
Volume 20 Gauges 10 Gauges 5 Gauges 2 Gauges 1 Gauge
mm 0.72 16.37 -4.01 -6.14 -20.68
% 0.06 1.49 -0.37 -0.56 -1.88

MIKE-SHE

Sampling Volume Error RMSE Relative Peak Error Error in Peak
Time (min)

(m3) % m3/s % Simple Weighted
20 Gauges -117,710 -0.84 0.25 8.60 3.64 2.60 2.27
10 Gauges 173,720 1.24 0.46 15.46 5.91 4.68 6.82
5 Gauges 232,041 1.66 0.65 21.99 10.21 7.52 10.00
2 Gauges -297,928 -2.13 0.94 31.81 10.80 9.42 7.73
1 Gauge -655,350 -4.69 1.15 39.11 14.46 12.67 14.09

HMS

Sampling Volume Error RMSE Relative Peak Error Error in Peak
Time (min)

(m3) % m3/s % Simple Weighted
20 Gauges -28,320 -0.19 0.26 8.40 3.24 2.42 0.47
10 Gauges 338,726 2.25 0.41 13.01 5.26 4.60 3.75
5 Gauges -96,741 -0.64 0.61 19.55 5.68 5.08 8.91
2 Gauges -201,648 -1.34 0.70 22.42 5.66 5.06 9.84
1 Gauge -505,503 -3.35 1.06 33.91 10.10 9.46 10.78
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7. RAINFALL SPATIAL SAMPLING ANALYSIS 8. COMBINED SPATIAL-TEMPORAL SAMPLING
ANALYSIS

As indicated earlier, both models were calibrated and
validated using all 30 rain gauges. This represents a In this set of experiments, both temporal and spatial
spatial density of about 1.4 gauges per square kilometer. samplings were allowed to vary, while experiment with
Such density was assumed to capture the true spatial the highest temporal sampling of 15 minutes and spatial
variation of rainfall over the study area, as such, it was sampling of 30 gauges was used as the overall reference.
used as the reference to which results from other spatial For each temporal sampling of 15-minutes, 30-minutes, 1-
sampling simulations will be compared to. In all the hour, 2-hours, and 6-hours, a simulation with 1, 2, 5, 10,
simulations presented in this section, the 15-minute 20 and 30 gauge(s) was performed. The main objective
rainfall temporal sampling was used. of this set of experiments is to observe the response of

both models to combined changes in the temporal and
The number of gauges was systematically reduced to spatial sampling of rainfall. Table 4, and Figures 7 and 8

20, 10, 5, 2, and 1 gauge(s) to represent lower spatial show the RMSE of the runoff prediction as function of
sampling scenarios. At every spatial sampling scenario, different spatial and temporal sampling. The relative
the selected rain gauges were as uniformly distributed error of peak magnitude and time showed similar patterns
over the watershed area as possible. The calibration and to those of the runoff RMSE.
validation simulation periods were repeated for the
various spatial sampling experiments. It should be
emphasized that the error introduced into the rainfall data Table 4: RMSE (%) for Combined Spatial-Temporal
affects both its spatial variability and total volume. Analysis.

The statistical analysis for these experiments is MIKE-SHE
summarized in Table 4 and Figure 6. The results show Resolu No. Of Rain Gauges
that, generally speaking, the models' performance tion 30 20 10 5 2 1

deteriorates as the density of rain gauges in the watershed 15 min 0.00 8.60 15.46 21.99 31.81 39.11
is decreased. Moreover, the figures also show that the 30 min 5.84 9.97 16.32 21.91 33.28 36.76
response of both models to changes in the rain gauges 1 hr 17.47 19.63 22.85 29.12 33.37 44.93

density was somewhat similar with MIKE-SHE showing 2 hr 1 43.26 43.00 45.34 49.17 52946 59.42

higher sensitivity especially at the lower end of the spatial 6 hr 93.92 193.0893.61 194.21 196.88 9.1

sampling. For example, increasing the number of rain HNMS

gauges from 2 to 5 has lead to a reduction in the RMSE of tion 30 20 in Gages
tin 3 0110 5 2 - 1

MIKE-SHE from 32% to 22%, while the RMSE of HMS 15 min 0.00 8.40 13.01 20.42 23.02 33.91
decreased from 22.4% to 19.6% only. 30 min 3.48 9.83 13.51 20.69 24.57 34.19

1 hr 13.93 16.92 18.17 25.07 26.69 38.55
40 3 2hr 36.12 36.85 36.88 41.43 41.31 52.17

6hr 92.08 92.37 91.10 94.87 92.79 101.65
35- -aMIKE-SHE_______

HMS 2.5S30 - 120
-~~ 30 .~~-n-RainfaII Error____ ____

o 2-
U)' 25-

o 100

-20- 1.5 E

15-0

10- 60
0.5 3Gae

5
0~~~2 4 .- 0Gages

0 5 10 15 20 25 30 35
Number of Rain Gauges 20....... 2 Gages

-- oI Gage

Figure 6: Error in rainfall and runoff due to changes in 0 60 120 180 240 300 360
spatial sampling of rainfall. Rainfall Resolution (min)

Figure 7: Runoff error distribution due to rainfall
temporal-spatial resolution (MIKE-SHE).
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120 In evaluating their performance, both models
predicted runoff volume, overall runoff discharge, peak

100 magnitude and time with a reasonable accuracy. The

error in predicting runoff volume was less than 8%,
S RMSE was less than 70%, and the error of peak

. .. magnitude was less than 26%. The statistical measures
-30 Gages showed that MIKE-SHE predicted the runoff volume,

-.- 0 Gages overall runoff discharge, and peak magnitude better than/ • / " -. 10GagesI
|--5 Gages HMS. On the other hand, HMS outperformed MIKE-

.... e...............s............ ........... 2 G SHE in predicting the peak timing. However, the results
Gof both models were overall quite comparable. This

0 60 120 180 240 300 360 realization is in agreement with the works of Michaud and
Rainfll Resolution (mi) Sorooshian (1994) and Refsgaard and Knudsen (1996).

Both studies concluded that conceptual and physically
Figure 8: Runoff error distribution due to rainfall based models have similar runoff prediction accuracy
temporal-spatial resolution (HMS). when data is available for calibration. The impact of

employing linear conceptual methodologies in HMS was
Figures 7 and 8 show that the response of the models evident in its inability to capture double-peak rainstorms,

to changes in the rain gauges density is a function of the and its sensitivity to any changes to the rainfall volume.
temporal sampling at which these gauges are set. For It is noteworthy that identifying and using seasonally
example, the impact of decreasing the density of rain variable calibration parameters was not the focus of this
gauges is minor if they are set to temporally sample at 6- study. Therefore, all simulation periods used in the
hour intervals. On the other hand, and as clearly shown in calibration and validation were limited to the wet non-
Figures 7 and 8, if the rain gauges are set to temporally growing season of January through May. Accordingly, it
sample at short intervals (1-hour or less), there is a was possible to use a single set of calibration parameters.
significant deterioration in the models' performance as
the density of the rain gauges decrease. It can also be In reference to the sensitivity of the models to the
observed that 5 gauges set to temporally sample at 15- spatial and temporal rainfall sampling, the study showed
minutes deliver an equivalent model performance to a 10- that errors introduced by coarse sampling scenarios can be
gauge network set to temporally sample at 1-hour significant. For example, the second component of
intervals. In other words, one might compensate for the prediction errors was in the order of ½ to of the first
loss of rainfall spatial information by increasing the component of the error as a result of reducing the
temporal sampling. temporal sampling from 15 minutes to 2 hours. Similarly,

reducing the number of gauges from 30 to 2 resulted in a
second component of prediction errors in the order of to

9. CONCLUSIONS AND CLOSING REMARKS ½ of the first component of the error. Overall, for this
particular watershed size, increasing the rain gauge

Physically based distributed model (represented by density from 1 to 2 resulted in the most significant
MIKE-SHE) and conceptual semi-distributed model improvement for both models. Similarly, a temporal
(represented by HEC-HMS) performances were compared sampling frequency beyond 1 hour showed significant
in this study. Both models were setup, calibrated, and deterioration in the quality of the runoff prediction.
validated for the Goodwin Creek watershed in northern
Mississippi. The impact of the temporal and spatial This study also showed that MIKE-SHE was more
sampling of rainfall on the performance of both models sensitive to the rainfall temporal and spatial sampling than
was also investigated. HMS. Such sensitivity was more pronounced and

persistent especially when the spatial sampling was
The simulations performed in this study focus on two significantly lowered. The sensitivity of MIKE-SHE can

components of errors. The first component is the error be attributed to its inherent dependency on the spatial
related to factors such as model structure, formulation, distribution of input data, and the physically based
lack of sufficient data, etc. This error characterizes the methodologies employed to model the various
overall model performance and was quantified herein by components of the hydrologic cycle. This observation
comparing the observed measurements to model emphasizes the need for detailed rainfall information to
simulations obtained with the 15 minutes temporal obtain accurate runoff prediction using distributed
sampling and all 30 rainfall gauges. The second physically based models.
component of error characterizes the sensitivity of model
performance to the temporal and spatial rainfall sampling.
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The combined spatial-temporal sampling experiment Klemes, V., 1986: Operational testing of hydrological
showed that increasing the temporal sampling simulation models, Hydrol. Sci. J., 31(1), 13-24.
compensates, at least partially, for the loss of rainfall Krajewski, W. F., V. Lakshmi, K. P. Georgakakos, and S.
spatial information. It also showed that under poor spatial C. Jain, 1991: A monte -carlo study of rainfall
sampling conditions, the gain in model performance by sampling effect on a distributed catchment model,
increasing the temporal sampling frequency becomes Water Resour. Res., 27(1), 119-128.
negligible. Michaud, J. D., and S. Sorooshian, 1994a: Comparison of

simple versus complex distributed runoff models on a
It should be emphasized that the conclusions and midsize semiarid watershed, Water Resour. Res.,

findings of this study are conditioned on the hydrologic 30(3), 593-605.
and meteorologic characteristics of the selected Michaud, J. D., and S. Sorooshian, 1994b: Effect of
watershed. Expanding the experiments performed herein rainfall-sampling errors on simulations of desert flash
to include watersheds of various sizes, and rainfall- floods, Water Resour. Res., 30(10), 2765-2775.
runnoff response characteristics would further evaluate Obled, C. H., J. Wendling, and K. Beven, 1994: The
the performance of each model and its sensitivity to sensitivity of hydrological models to spatial rainfall
temporal and spatial sampling. Efforts are underway to patterns: an evaluation using observed data, J.
evaluate the performance of conceptual and physically Hydrol., 159, 305-333.
based models on coastal low-gradient watersheds with Ogden, F. L., and P. Y. Julien, 1993: Runoff sensitivity to
high variable tropical rainfall regimes. temporal and spatial rainfall variability at runoff

plane and small basin scales, Water Resour. Res.,
29(8), 2589-2597.
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